
 © 2024 CyberRatings.org. All rights reserved.

In Q4 2024, CyberRatings.org performed an independent test
of the Fortinet FortiSASE v24.2.63 against the Security Service
Edge (SSE) Threat Protection Methodology v2.1 using Amazon
Web Services and our Austin, Texas facility. The product was
thoroughly tested to determine how it handled TLS/SSL 1.2 and
1.3 cipher suites, how it defended against 205 exploits, 7,140
malware samples, and whether any of 1,124 evasions could
bypass its protection. Both clear text and encrypted traffic
were measured to provide a more realistic rating based on
modern network traffic.

Threats: Blocked Tested

Exploits 203 205

Malware 7,104 7,140

Wild Malware – w/o Reputation 6,191 6,195

Wild Malware – w/ Reputation 913 945

Evasions 1,124 1,124

HTTP 602 602

HTML 108 108

Malware Evasions 290 290

Java 64 64

Combination 60 60

Version Prevalence Cipher Suites Results

TLS 1.3 66.51% (0x13, 0x02) Supported

TLS 1.2 11.85% (0xC0, 0x30) Supported

TLS 1.2 9.26% (0xC0, 0x2F) Supported

TLS 1.3 8.07% (0x13, 0x01) Supported

TLS 1.2 1.72% (0xCC, 0xA8) Supported

TLS 1.2 0.68% (0xC0, 0x28) Supported

TLS 1.3 0.55% (0x13, 0x03) Supported

TLS 1.2 0.42% (0xC0, 0x2C) Supported

TLS 1.2 0.27% (0xCC, 0xA9) Supported

TLS 1.2 0.20% (0xC0, 0x2B) Supported

 © 2024 CyberRatings.org. All rights reserved. 2

An SSE is a cloud platform used to protect a trusted network from an untrusted network while allowing authorized
communications to pass from one side to the other, facilitating secure business use of the Internet. The CyberRatings exploit
repository contains exploits demonstrating many protocols and applications. Exploit sets for individual tests are selected
based on CVSS score (how widely used is an application + what can an attacker do?), use case, and customer relevance.

A key to effective protection is correctly identifying and allowing legitimate traffic while protecting against malware, exploits,
and phishing attacks. False positives are any legitimate, non-malicious content/traffic perceived as malicious. False positive
tests assessed the SSE’s ability to block attacks while permitting legitimate traffic. If the SSE experienced false positive
events, it was tuned until no further false positive events were encountered.

An exploit is an attack that takes advantage of a protocol, product,
operating system, or application vulnerability. CyberRatings verified that
the SSE could detect and block exploits while remaining resistant to false
positives by attempting to send exploits through the product under test,
confirming that the malicious traffic was blocked, and all appropriate
logging and notifications were performed.

Exploits within the CyberRatings exploit library target a wide
range of protocols and applications. The figure below shows
how the product under test offers exploit protection for ten
top vendors targeted in this test.

Figure 1 — Coverage by Target Vendor

Coverage by date provides insight into whether a vendor is
aggressively aging out protection signatures to preserve
performance levels. It also reveals whether a product lags in
protection for the most current vulnerabilities. CyberRatings
reports exploits by individual years for the past six years.

Year Coverage %

2018 97.14%

2019 99.26%

2020 100%

2021 100%

2022 100%

2023 100%

Figure 3 — Coverage by Date

Vendor Coverage %

Adobe 100%

Apache 100%

Cisco 100%

Foxit 100%

Google 100%

LibreOffice 100%

Microsoft 98.88%

OMRON 100%

Oracle 100%

VMware 100%

Figure 2 – Exploit Block Rate

 © 2024 CyberRatings.org. All rights reserved. 3

CyberRatings defines malware as software designed to disrupt, damage, or gain
unauthorized access to computer systems. Malware can take many forms,
including viruses, worms, Trojan horses, ransomware, spyware, adware, and
other malicious programs. Its primary goal is to compromise the confidentiality,
integrity, or availability of the victim's data or system.

Threat actors apply evasion techniques to disguise and modify attacks to
avoid detection by security products. Therefore, it is imperative that an SSE
correctly handles evasions. An attacker can bypass protection if an SSE fails
to detect a single form of evasion.

Handling evasions is hard. Our engineers verified that the SSE could block
exploits and malware when subjected to numerous evasion techniques. To
develop a baseline, we took several previously blocked attacks. We then
applied evasion techniques to those baseline samples and tested them. This
ensured that any misses were due to the evasions, not the baseline samples.

We adjusted scoring for evasions according to their impact. For example, HTTP
evasions can be more broadly applied than HTML evasions. An HTTP evasion
can be applied to thousands of exploits whereas a Java evasion is limited to
fewer exploits.

We used multiple exploits and malware samples for each evasion technique during testing to see how the SSE defended
against these combinations. Exploits and malware were tested across HTTP and HTTPS to see if the SSE could correctly
decrypt and inspect each attack.

Figure 6 – Evasions by Technique

Evasion Technique
Number of
Evasions Tested

Number of
Evasions Blocked

HTTP 602 602

HTML 108 108

Malware Evasions (Packers, compressors, and portable executable) 290 290

Java 64 64

Combination 60 60

Figure 4 — Malware Block Rate

Figure 5 — Evasion Effectiveness

 © 2024 CyberRatings.org. All rights reserved. 4

The use of the Secure Sockets Layer (SSL) protocol and its current iteration, Transport Layer Security (TLS), are now the norm.
Let’s Encrypt statistics show that as of December 2023, over 80% of web traffic was sent over HTTPS.1

While CyberRatings believes using encryption is good, TLS/SSL is susceptible to various security attacks at multiple levels of
network communication. For example, attacks have been observed in the handshake protocol, record protocol, application
data protocol, and Public Key Infrastructure (PKI). To address the growing threat of focused attacks using the most common
web protocols and applications, the capabilities of the SSE were tested to provide visibility into the TLS/SSL payloads and
detect attacks concealed by encryption and attacks against the encryption protocols themselves. The table below lists the
tested TLS/SSL in order of prevalence2 per December 2023.

First, we tested to verify the SSE correctly inspected and blocked prohibited content. We then encrypted using the top 10
most prevalent ciphers and verified that the prohibited content was still inspected and blocked. If a cipher suite was not
supported, we verified the SSE blocked all traffic using that cipher. Otherwise, an attacker could simply bypass security using
an unsupported cipher suite.

1 Let's Encrypt Stats (https://letsencrypt.org/stats/)
2 https://crawler.ninja/files/ciphers.txt

Version Prevalence Cipher Suites Results

TLS 1.3 66.51% TLS_AES_256_GCM_SHA384 (0x13, 0x02) Supported

TLS 1.2 11.85% TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 (0xC0, 0x30) Supported

TLS 1.2 9.26% TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 (0xC0, 0x2F) Supported

TLS 1.3 8.07% TLS_AES_128_GCM_SHA256 (0x13, 0x01) Supported

TLS 1.2 1.72% TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256 (0xCC, 0xA8) Supported

TLS 1.2 0.68% TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 (0xC0, 0x28) Supported

TLS 1.3 0.55% TLS_CHACHA20_POLY1305_SHA256 (0x13, 0x03) Supported

TLS 1.2 0.42% TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 (0xC0, 0x2C) Supported

TLS 1.2 0.27% TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256 (0xCC, 0xA9) Supported

TLS 1.2 0.20% TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 (0xC0, 0x2B) Supported

Figure 7 – TLS/SSL Functionality

 © 2024 CyberRatings.org. All rights reserved. 5

Cloud security architects are tasked with designing environments that scale. The performance of the SSE was tested using
various traffic conditions that provide metrics for real-world performance. Individual implementations will vary based on
usage; however, these quantitative metrics provide a gauge as to whether a particular SSE is appropriate for a given
environment. The performance tests were conducted at various locations across the United States. The results may differ
depending on factors such as the geographical distance between clients and servers, the tunneling protocols employed, the
bandwidth of the tunnels, the internet connectivity between sites, and the server's capacity to handle high CPS (connections
per second) and throughput.

The goal was to stress the HTTP detection engine and determine how the device copes with network loads of varying average
packet size and varying connections per second. By creating genuine session-based traffic with varying session lengths, the
device was forced to track valid TCP sessions, thus ensuring a higher workload rather than simple packet-based background
traffic.

Figure 8 – HTTP Capacity (Clear Text)

Each transaction consisted of a single HTTP GET request, and there were no transaction delays (i.e., the web server
responded immediately to all requests). All packets contained valid payload (a mix of binary and ASCII objects) and address
data. This test provided an excellent representation of a live network (albeit one biased towards HTTP traffic) at various
network loads.

The goal was to stress the HTTPS engine and determine how the SSE coped with network loads of varied packet sizes and
varying connections per second. The SSE was forced to track valid TCP sessions by creating session-based traffic with varying
session lengths, ensuring a higher workload than simple packet-based background traffic. Encrypting the traffic using TLS/SSL
with varying algorithms forced the device to decrypt traffic before inspection, increasing the workload further.

 © 2024 CyberRatings.org. All rights reserved. 6

Figure 9 – HTTPS Capacity [TLS_AES_256_GCM_SHA384 (0x13, 0x02)]

Figure 10 – HTTPS Capacity [TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 (0xC0, 0x30)]

As many security devices and services can impact the time it takes to download files (PDFs, data files, zipped files,
documents, etc.), it is important to understand the impact on files in a variety of formats as they are downloaded.

Files from each of the following types were downloaded from the following locations to a local folder:

• Microsoft Office Word files
• Microsoft Office Excel files
• Adobe Acrobat PDFs
• WinZip Zipped files/folders

This test was first performed without the SSE to establish a baseline. The SSE was then enabled, and the test was rerun. With
the results relative to the baseline, the net increase in time to copy clean files of various sizes was determined.

 © 2024 CyberRatings.org. All rights reserved. 7

Figure 11 – Average Download of files from baseline and SSE

Figure 12 – Download of 10 Mb and 100 Mb files from baseline and SSE

Figure 13 – Download of 100 Mb and 1,000 Mb files from baseline and SSE

 © 2024 CyberRatings.org. All rights reserved. 8

TLS/SSL Support

Cipher Suites Prevalence Version Result

TLS_AES_256_GCM_SHA384 (0x13, 0x02) 66.51% TLS 1.3 Supported

TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 (0xC0, 0x30) 11.85% TLS 1.2 Supported

TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 (0xC0, 0x2F) 9.26% TLS 1.2 Supported

TLS_AES_128_GCM_SHA256 (0x13, 0x01) 8.07% TLS 1.3 Supported

TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256 (0xCC, 0xA8) 1.72% TLS 1.2 Supported

TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 (0xC0, 0x28) 0.68% TLS 1.2 Supported

TLS_CHACHA20_POLY1305_SHA256 (0x13, 0x03) 0.55% TLS 1.3 Supported

TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 (0xC0, 0x2C) 0.42% TLS 1.2 Supported

TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256 (0xCC,
0xA9)

0.27% TLS 1.2 Supported

TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 (0xC0, 0x2B) 0.20% TLS 1.2 Supported

Threat Prevention

False Positives Result

File Download Test 99.83%

Browsing Test 100.00%

Exploits Block Rate

Exploits without Background Network Load 98.05%

Exploits with Background Network Load 98.05%

Malware Block Rate

Wild Malware – w/o Reputation 99.02%

Wild Malware – w/ Reputation 99.02%

Evasions Result

All Evasions 100%

HTTP 100%

HTML 100%

Malware Evasions 100%

Java 100%

Combination 100%

Evasion Detail Result

7z with high compression using the BZIP2 algorithm (CL=9) Pass

7z with high compression using the PPMD algorithm (CL=9) Pass

 © 2024 CyberRatings.org. All rights reserved. 9

Add HTTP header (field=HTTP/1.0) (value=HTTP/1.0) (before) Pass

Add HTTP header (field=X-Content-Encoding) (value=gzip) (after) Pass

Add HTTP header (field=X-Forwarded-For) (value=127.0.0.1) (after) Pass

Add HTTP header (field=X-Padding) (after) Pass

Add HTTP header (field=X-Test) (value=X5O!P%@AP[4\PZX54(P^)7CC)7}$EICAR-STANDARD-ANTIVIRUS-
TEST-FILE!$H+H*) (before) Pass

Add HTTP header (field=X-Transfer-Encoding) (value=chunked) (after) Pass

Add newline padding to each newline in JavaScript (size: 100 newlines) Pass

Add newline padding to each newline in JavaScript (size: 100 newlines); Add HTTP header (field=X-Padding)
(after) Pass

Add newline padding to each newline in JavaScript (size: 100 newlines); Add padding to the document (size:
20000 bytes) (position: %{position}) (padding bytes:A)

Pass

Add newline padding to each newline in JavaScript (size: 100 newlines); Add padding to the document (size:
20000 bytes) (position: %{position}) (padding bytes:A); Add HTTP header (field=X-Padding) (after)

Pass

Add newline padding to each newline in JavaScript (size: 100 newlines); Add padding to the document (size:
20000 bytes) (position: %{position}) (padding bytes:A); HTTP Chunked Transfer Encoding (16-byte); Affix to
the Chunk Sizes in Non-Terminal HTTP Chunk Headers (before)

Pass

Add newline padding to each newline in JavaScript (size: 100 newlines); Add padding to the document (size:
20000 bytes) (position: %{position}) (padding bytes:A); HTTP Deflate Compression Content Encoding

Pass

Add newline padding to each newline in JavaScript (size: 100 newlines); Add padding to the document (size:
20000 bytes) (position: %{position}) (padding bytes:A); HTTP Gzip Compression Content Encoding; HTTP
Chunked Transfer Encoding (5-byte); Prefix the status line with (0x0d0a0d0a)

Pass

Add newline padding to each newline in JavaScript (size: 100 newlines); Add padding to the document (size:
20000 bytes) (position: %{position}) (padding bytes:random)

Pass

Add newline padding to each newline in JavaScript (size: 100 newlines); Add padding to the document (size:
20000 bytes) (position: %{position}) (padding bytes:random); Add HTTP header (field=X-Padding) (after)

Pass

Add newline padding to each newline in JavaScript (size: 100 newlines); Add padding to the document (size:
20000 bytes) (position: %{position}) (padding bytes:random); HTTP Chunked Transfer Encoding (16-byte);
Affix to the Chunk Sizes in Non-Terminal HTTP Chunk Headers (before)

Pass

Add newline padding to each newline in JavaScript (size: 100 newlines); Add padding to the document (size:
20000 bytes) (position: %{position}) (padding bytes:random); HTTP Deflate Compression Content Encoding

Pass

Add newline padding to each newline in JavaScript (size: 100 newlines); Add padding to the document (size:
20000 bytes) (position: %{position}) (padding bytes:random); HTTP Gzip Compression Content Encoding;
HTTP Chunked Transfer Encoding (5-byte); Prefix the status line with (0x0d0a0d0a)

Pass

Add newline padding to each newline in JavaScript (size: 100 newlines); Add padding to the document (size:
20000 bytes) (position: before) (padding bytes:A)

Pass

Add newline padding to each newline in JavaScript (size: 100 newlines); Add padding to the document (size:
20000 bytes) (position: before) (padding bytes:A); Add HTTP header (field=X-Padding) (after)

Pass

Add newline padding to each newline in JavaScript (size: 100 newlines); Add padding to the document (size:
20000 bytes) (position: before) (padding bytes:A); HTTP Brotli Compression Content Encoding

Pass

Add newline padding to each newline in JavaScript (size: 100 newlines); Add padding to the document (size:
20000 bytes) (position: before) (padding bytes:A); HTTP Brotli Compression Content Encoding; HTTP
Chunked Transfer Encoding (5-byte)

Pass

Add newline padding to each newline in JavaScript (size: 100 newlines); Add padding to the document (size:
20000 bytes) (position: before) (padding bytes:A); HTTP Chunked Transfer Encoding (16-byte); Affix to the
Chunk Sizes in Non-Terminal HTTP Chunk Headers (before)

Pass

Add newline padding to each newline in JavaScript (size: 100 newlines); Add padding to the document (size:
20000 bytes) (position: before) (padding bytes:random)

Pass

Add newline padding to each newline in JavaScript (size: 100 newlines); Add padding to the document (size:
20000 bytes) (position: before) (padding bytes:random); Add HTTP header (field=X-Padding) (after)

Pass

 © 2024 CyberRatings.org. All rights reserved. 10

Add newline padding to each newline in JavaScript (size: 100 newlines); Add padding to the document (size:
20000 bytes) (position: before) (padding bytes:random); HTTP Brotli Compression Content Encoding

Pass

Add newline padding to each newline in JavaScript (size: 100 newlines); Add padding to the document (size:
20000 bytes) (position: before) (padding bytes:random); HTTP Brotli Compression Content Encoding; HTTP
Chunked Transfer Encoding (5-byte)

Pass

Add newline padding to each newline in JavaScript (size: 100 newlines); Add padding to the document (size:
20000 bytes) (position: before) (padding bytes:random); HTTP Chunked Transfer Encoding (16-byte); Affix to
the Chunk Sizes in Non-Terminal HTTP Chunk Headers (before)

Pass

Add newline padding to each newline in JavaScript (size: 100 newlines); HTTP Brotli Compression Content
Encoding

Pass

Add newline padding to each newline in JavaScript (size: 100 newlines); HTTP Brotli Compression Content
Encoding; HTTP Chunked Transfer Encoding (5-byte)

Pass

Add newline padding to each newline in JavaScript (size: 100 newlines); HTTP Chunked Transfer Encoding
(16-byte); Affix to the Chunk Sizes in Non-Terminal HTTP Chunk Headers (before)

Pass

Add newline padding to each newline in JavaScript (size: 100 newlines); HTTP Deflate Compression Content
Encoding

Pass

Add newline padding to each newline in JavaScript (size: 100 newlines); HTTP Gzip Compression Content
Encoding; HTTP Chunked Transfer Encoding (5-byte); Prefix the status line with (0x0d0a0d0a)

Pass

Add newline padding to each newline in JavaScript (size: 1000 newlines) Pass

Add padding to the document (size: 10000 bytes) (position: %{position}) (padding bytes:A) Pass

Add padding to the document (size: 10000 bytes) (position: %{position}) (padding bytes:random) Pass

Add padding to the document (size: 10000 bytes) (position: before) (padding bytes:A) Pass

Add padding to the document (size: 10000 bytes) (position: before) (padding bytes:random) Pass

Add padding to the document (size: 20000 bytes) (position: %{position}) (padding bytes:A) Pass

Add padding to the document (size: 20000 bytes) (position: %{position}) (padding bytes:A); Add HTTP header
(field=X-Padding) (after)

Pass

Add padding to the document (size: 20000 bytes) (position: %{position}) (padding bytes:A); HTTP Chunked
Transfer Encoding (16-byte); Affix to the Chunk Sizes in Non-Terminal HTTP Chunk Headers (before)

Pass

Add padding to the document (size: 20000 bytes) (position: %{position}) (padding bytes:A); HTTP Deflate
Compression Content Encoding Pass

Add padding to the document (size: 20000 bytes) (position: %{position}) (padding bytes:A); HTTP Gzip
Compression Content Encoding; HTTP Chunked Transfer Encoding (5-byte); Prefix the status line with
(0x0d0a0d0a)

Pass

Add padding to the document (size: 20000 bytes) (position: %{position}) (padding bytes:random) Pass

Add padding to the document (size: 20000 bytes) (position: %{position}) (padding bytes:random); Add HTTP
header (field=X-Padding) (after)

Pass

Add padding to the document (size: 20000 bytes) (position: %{position}) (padding bytes:random); HTTP
Chunked Transfer Encoding (16-byte); Affix to the Chunk Sizes in Non-Terminal HTTP Chunk Headers
(before)

Pass

Add padding to the document (size: 20000 bytes) (position: %{position}) (padding bytes:random); HTTP
Deflate Compression Content Encoding Pass

Add padding to the document (size: 20000 bytes) (position: %{position}) (padding bytes:random); HTTP Gzip
Compression Content Encoding; HTTP Chunked Transfer Encoding (5-byte); Prefix the status line with
(0x0d0a0d0a)

Pass

Add padding to the document (size: 20000 bytes) (position: before) (padding bytes:A) Pass

Add padding to the document (size: 20000 bytes) (position: before) (padding bytes:A); Add HTTP header
(field=X-Padding) (after)

Pass

Add padding to the document (size: 20000 bytes) (position: before) (padding bytes:A); HTTP Brotli
Compression Content Encoding

Pass

 © 2024 CyberRatings.org. All rights reserved. 11

Add padding to the document (size: 20000 bytes) (position: before) (padding bytes:A); HTTP Brotli
Compression Content Encoding; HTTP Chunked Transfer Encoding (5-byte)

Pass

Add padding to the document (size: 20000 bytes) (position: before) (padding bytes:A); HTTP Chunked
Transfer Encoding (16-byte); Affix to the Chunk Sizes in Non-Terminal HTTP Chunk Headers (before) Pass

Add padding to the document (size: 20000 bytes) (position: before) (padding bytes:random) Pass

Add padding to the document (size: 20000 bytes) (position: before) (padding bytes:random); Add HTTP
header (field=X-Padding) (after)

Pass

Add padding to the document (size: 20000 bytes) (position: before) (padding bytes:random); HTTP Brotli
Compression Content Encoding

Pass

Add padding to the document (size: 20000 bytes) (position: before) (padding bytes:random); HTTP Brotli
Compression Content Encoding; HTTP Chunked Transfer Encoding (5-byte) Pass

Add padding to the document (size: 20000 bytes) (position: before) (padding bytes:random); HTTP Chunked
Transfer Encoding (16-byte); Affix to the Chunk Sizes in Non-Terminal HTTP Chunk Headers (before)

Pass

Bz2 with high compression (CL=9) Pass

Declared HTTP/0.9 response; but includes response headers; chunking declared but served without
chunking

Pass

Double Transfer-Encoding: first empty; last chunked. Served with invalid content-length; not chunked. Pass

EICAR string included at top of HTML Pass

Gz with high compression (CL=9) Pass

HTTP Brotli Compression Content Encoding Pass

HTTP Brotli Compression Content Encoding; HTTP Chunked Transfer Encoding (5-byte) Pass

HTTP Chunked Transfer Encoding (1-byte) Pass

HTTP Chunked Transfer Encoding (1024-byte) Pass

HTTP Chunked Transfer Encoding (16-byte) Pass

HTTP Chunked Transfer Encoding (16-byte); Affix to the Chunk Sizes in Non-Terminal HTTP Chunk Headers
(!!!!) (after)

Pass

HTTP Chunked Transfer Encoding (16-byte); Affix to the Chunk Sizes in Non-Terminal HTTP Chunk Headers
(!!!!1) (after) Pass

HTTP Chunked Transfer Encoding (16-byte); Affix to the Chunk Sizes in Non-Terminal HTTP Chunk Headers
(.9) (after)

Pass

HTTP Chunked Transfer Encoding (16-byte); Affix to the Chunk Sizes in Non-Terminal HTTP Chunk Headers
(.999999999999999999999) (after)

Pass

HTTP Chunked Transfer Encoding (16-byte); Affix to the Chunk Sizes in Non-Terminal HTTP Chunk Headers
(0) (before)

Pass

HTTP Chunked Transfer Encoding (16-byte); Affix to the Chunk Sizes in Non-Terminal HTTP Chunk Headers
(0000000000000000) (before)

Pass

HTTP Chunked Transfer Encoding (16-byte); Affix to the Chunk Sizes in Non-Terminal HTTP Chunk Headers
(before) Pass

HTTP Chunked Transfer Encoding (16-byte); Replace the Chunk Size in the Terminal HTTP Chunk Header (0!) Pass

HTTP Chunked Transfer Encoding (16-byte); Replace the Chunk Size in the Terminal HTTP Chunk Header
(0+0)

Pass

HTTP Chunked Transfer Encoding (16-byte); Replace the Chunk Size in the Terminal HTTP Chunk Header
(000000000)

Pass

HTTP Chunked Transfer Encoding (16-byte); Replace the Chunk Size in the Terminal HTTP Chunk Header Pass

HTTP Chunked Transfer Encoding (2-byte) Pass

HTTP Chunked Transfer Encoding (256-byte) Pass

 © 2024 CyberRatings.org. All rights reserved. 12

HTTP Chunked Transfer Encoding (3-byte) Pass

HTTP Chunked Transfer Encoding (32-byte) Pass

HTTP Chunked Transfer Encoding (4-byte) Pass

HTTP Chunked Transfer Encoding (5-byte) Pass

HTTP Chunked Transfer Encoding (5-byte); Prefix the status line with (0x0d0a) Pass

HTTP Chunked Transfer Encoding (5-byte); Prefix the status line with (0x0d0a0d0a) Pass

HTTP Chunked Transfer Encoding (512-byte) Pass

HTTP Chunked Transfer Encoding (64-byte) Pass

HTTP Chunked Transfer Encoding (8-byte) Pass

HTTP Deflate Compression Content Encoding Pass

HTTP Deflate Compression Content Encoding; HTTP Chunked Transfer Encoding (5-byte) Pass

HTTP Gzip Compression Content Encoding Pass

HTTP Gzip Compression Content Encoding; HTTP Chunked Transfer Encoding (32-byte); Add HTTP header
(field=Transfer-Encoding) (value=identity) (after)

Pass

HTTP Gzip Compression Content Encoding; HTTP Chunked Transfer Encoding (5-byte) Pass

HTTP Gzip Compression Content Encoding; HTTP Chunked Transfer Encoding (5-byte); Prefix the status line
with (0x0d0a0d0a)

Pass

HTTP Identity Content Encoding Pass

HTTP Identity Content Encoding; HTTP Chunked Transfer Encoding (5-byte) Pass

HTTP Identity Transfer Encoding Pass

HTTP/0.9 response (no response headers) Pass

HTTP/0001.1 declared; served chunked Pass

HTTP/1.0 response declaring chunking with invalid content-length header; served without chunking Pass

HTTP/1.0 response declaring chunking; served without chunking Pass

HTTP/1.1 chunked response with chunk sizes followed by a comma (hex '2c') Pass

HTTP/1.1 chunked response with chunk sizes followed by a comma (hex '2c'); compressed with deflate Pass

HTTP/1.1 chunked response with chunk sizes followed by a comma (hex '2c'); compressed with gzip Pass

HTTP/1.1 chunked response with chunk sizes followed by a space (hex '20') then a $ (hex '24') Pass

HTTP/1.1 chunked response with chunk sizes followed by a space (hex '20') then a $ (hex '24'); compressed
with deflate

Pass

HTTP/1.1 chunked response with chunk sizes followed by a space (hex '20') then a $ (hex '24'); compressed
with gzip

Pass

HTTP/1.1 chunked response with chunk sizes followed by end of transmission (hex '04') Pass

HTTP/1.1 chunked response with chunk sizes followed by end of transmission (hex '04'); compressed with
deflate Pass

HTTP/1.1 chunked response with chunk sizes followed by end of transmission (hex '04'); compressed with
gzip

Pass

HTTP/1.1 chunked response with chunk sizes followed by end of transmission block (hex '17') Pass

HTTP/1.1 chunked response with chunk sizes followed by end of transmission block (hex '17'); compressed
with deflate

Pass

 © 2024 CyberRatings.org. All rights reserved. 13

HTTP/1.1 chunked response with chunk sizes followed by end of transmission block (hex '17'); compressed
with gzip

Pass

HTTP/1.1 chunked response with chunk sizes followed by file separator (hex '1c') Pass

HTTP/1.1 chunked response with chunk sizes followed by file separator (hex '1c'); compressed with deflate Pass

HTTP/1.1 chunked response with chunk sizes followed by file separator (hex '1c'); compressed with gzip Pass

HTTP/1.1 chunked response with chunk sizes preceded by multiple zeros (hex '30') Pass

HTTP/1.1 chunked response with chunk sizes preceded by multiple zeros (hex '30'); compressed with deflate Pass

HTTP/1.1 chunked response with chunk sizes preceded by multiple zeros (hex '30'); compressed with gzip Pass

HTTP/1.1 chunked response with final chunk size of
'00
00' (rather than '0')

Pass

HTTP/1.1 chunked response with no status indicated Pass

HTTP/1.1 response compressed with deflate Pass

HTTP/1.1 response compressed with gzip Pass

HTTP/1.1 response declaring deflate followed by junk string; served uncompressed Pass

HTTP/1.1 response declaring gzip followed by junk string; served uncompressed Pass

HTTP/1.1 response with "\r\rTransfer-Encoding: chunked"; served chunked Pass

HTTP/1.1 response with "\tTransfer-Encoding: chonked" after custom header line with "chunked" as value;
served without chunking

Pass

HTTP/1.1 response with "\tTransfer-Encoding: chunked"; served chunked Pass

HTTP/1.1 response with "Content-Encoding: gzip(hex 2C)"; served uncompressed Pass

HTTP/1.1 response with "SIP/2.0 200 OK\r\n" before status header; chunked Pass

HTTP/1.1 response with "Transfer-Encoding: chunked(hex 2C)"; served without chunking Pass

HTTP/1.1 response with "Transfer-Encoding: gzip"; served uncompressed Pass

HTTP/1.1 response with content-encoding declaration of gzip followed by space+junk string; served
uncompressed and chunked

Pass

HTTP/1.1 response with content-encoding header for deflate; followed by content-encoding header for gzip;
served uncompressed and chunked

Pass

HTTP/1.1 response with header end \n\004\n\n; chunked Pass

HTTP/1.1 response with header end \n\006\011\n\n; chunked Pass

HTTP/1.1 response with header end \n\033\n\003\n\n; chunked Pass

HTTP/1.1 response with header end \n\r\r\n; chunked Pass

HTTP/1.1 response with header end \r\n\010\r\n\r\n; chunked Pass

HTTP/1.1 response with header with no field name and colon+junk string; followed by '\tTransfer-Encoding:
chunked' header; followed by custom header; served chunked

Pass

HTTP/1.1 response with invalid content-length header size declaration followed by space and null (hex '20
00')

Pass

HTTP/1.1 response with junk string before status header; chunked Pass

HTTP/1.1 response with line folded transfer-encoding header declaring chunking ('Transfer-Encoding: '
followed by CRLF (hex '0d 0a') followed by 'chunked' followed by CRLF (hex '0d 0a'); served without chunking

Pass

HTTP/1.1 response with space+junk string followed by \r\n before first header; chunked Pass

 © 2024 CyberRatings.org. All rights reserved. 14

HTTP/1.1 response with status code 202; with message-body; chunked Pass

HTTP/1.1 response with status code 300; with message-body; chunked Pass

HTTP/1.1 response with status code 306; with message-body; chunked Pass

HTTP/1.1 response with status code 414; with message-body; chunked Pass

HTTP/1.1 response with status code 429; with message-body; chunked Pass

HTTP/1.1 response with transfer-encoding header declaring chunking with lots of whitespace ('Transfer-
Encoding:' followed by 8000 spaces (hex '20' * 8000) followed by 'chunked' followed by CRLF (hex '0d 0a');
served chunked

Pass

HTTP/1.1\nTransfer-Encoding:chunked; header end \n\n; served chunked Pass

HTTP/2.0 declared; served chunked Pass

HTTP/6.-66 declared; served chunked Pass

HTTP/7.7 declared; served chunked Pass

Iso Pass

Kkrunchy Pass

Kz with high compression using the KZ algorithm (CL=9) Pass

Nested 7z with high compression using the PPMD algorithm (CL=9) (depth=2) Pass

Nested 7z with high compression using the PPMD algorithm (CL=9) (depth=3) Pass

Nested 7z with high compression using the PPMD algorithm (CL=9) (depth=4) Pass

Nested 7z with high compression using the PPMD algorithm (CL=9) (depth=5) Pass

Nested Bz2 with high compression (CL=9) (depth=2) Pass

Nested Bz2 with high compression (CL=9) (depth=3) Pass

Nested Bz2 with high compression (CL=9) (depth=4) Pass

Nested Bz2 with high compression (CL=9) (depth=5) Pass

Nested Gz with high compression (CL=9) (depth=2) Pass

Nested Gz with high compression (CL=9) (depth=3) Pass

Nested Gz with high compression (CL=9) (depth=4) Pass

Nested Gz with high compression (CL=9) (depth=5) Pass

Nested Zip with high compression using the DEFLATE algorithm (CL=9) (depth=2) Pass

Nested Zip with high compression using the DEFLATE algorithm (CL=9) (depth=3) Pass

Nested Zip with high compression using the DEFLATE algorithm (CL=9) (depth=4) Pass

Nested Zip with high compression using the DEFLATE algorithm (CL=9) (depth=5) Pass

No status line; chunking indicated; served unchunked Pass

padded with <5MB Pass

padded with >25MB Pass

padded with >25MB and chunked Pass

padded with >25MB and compressed with deflate Pass

 © 2024 CyberRatings.org. All rights reserved. 15

padded with >25MB and compressed with gzip Pass

padded with >5MB and <25MB Pass

padded with >5MB and <25MB and chunked Pass

padded with >5MB and <25MB and compressed with deflate Pass

padded with >5MB and <25MB and compressed with gzip Pass

padded with >5MB and chunked Pass

padded with 5MB and compressed with deflate Pass

padded with 5MB and compressed with gzip Pass

Password protected Kz with high compression using the KZ algorithm (CL=9) (password=password) Pass

Password protected Rar with high compression using the RAR algorithm (CL=9) (password=password) Pass

Password protected Rar with high compression using the RAR4 algorithm (CL=9) (password=password) Pass

Password protected Zip with high compression using the LZMA algorithm (CL=9) (password=password) Pass

Prefix the status line with (0x0d0a) Pass

Prefix the status line with (0x0d0a0d0a) Pass

Prefix the status line with (0x0d0a0d0a0d0a) Pass

Prefix the status line with (0x20202020) Pass

Rar with high compression using the RAR algorithm (CL=9) Pass

Rar with high compression using the RAR4 algorithm (CL=9) Pass

Relevant headers padded by preceding with hundreds of random custom headers Pass

Replace the HTTP End of Headers Token with (0x202020200d0a) Pass

Send download as a ZIP file (bzip2) Pass

Send download as a ZIP file (bzip2); Add HTTP header (field=X-Padding) (after) Pass

Send download as a ZIP file (bzip2); HTTP Chunked Transfer Encoding (16-byte); Replace the Chunk Size in
the Terminal HTTP Chunk Header (0!) Pass

Send download as a ZIP file (bzip2); HTTP Chunked Transfer Encoding (256-byte) Pass

Send download as a ZIP file (bzip2); HTTP Identity Content Encoding Pass

Send download as a ZIP file (bzip2); HTTP Identity Content Encoding; HTTP Chunked Transfer Encoding (5-
byte) Pass

Send download as a ZIP file (deflated) Pass

Send download as a ZIP file (deflated); Add HTTP header (field=X-Padding) (after) Pass

Send download as a ZIP file (deflated); HTTP Chunked Transfer Encoding (16-byte); Replace the Chunk Size
in the Terminal HTTP Chunk Header (0!)

Pass

Send download as a ZIP file (deflated); HTTP Chunked Transfer Encoding (256-byte) Pass

Send download as a ZIP file (deflated); HTTP Identity Content Encoding Pass

Send download as a ZIP file (deflated); HTTP Identity Content Encoding; HTTP Chunked Transfer Encoding (5-
byte)

Pass

Send download as a ZIP file (lzma) Pass

Send download as a ZIP file (lzma); Add HTTP header (field=X-Padding) (after) Pass

 © 2024 CyberRatings.org. All rights reserved. 16

Send download as a ZIP file (lzma); HTTP Chunked Transfer Encoding (16-byte); Replace the Chunk Size in
the Terminal HTTP Chunk Header (0!)

Pass

Send download as a ZIP file (lzma); HTTP Chunked Transfer Encoding (256-byte) Pass

Send download as a ZIP file (lzma); HTTP Identity Content Encoding Pass

Send download as a ZIP file (lzma); HTTP Identity Content Encoding; HTTP Chunked Transfer Encoding (5-
byte)

Pass

Send download as a ZIP file (none) Pass

Send download as a ZIP file (none); Add HTTP header (field=X-Padding) (after) Pass

Send download as a ZIP file (none); HTTP Chunked Transfer Encoding (16-byte); Replace the Chunk Size in
the Terminal HTTP Chunk Header (0!)

Pass

Send download as a ZIP file (none); HTTP Chunked Transfer Encoding (256-byte) Pass

Send download as a ZIP file (none); HTTP Identity Content Encoding Pass

Send download as a ZIP file (none); HTTP Identity Content Encoding; HTTP Chunked Transfer Encoding (5-
byte)

Pass

Telock Pass

UPX best Pass

UPX default Pass

UPX ultra brute no lzma Pass

UTF-16 encoding with BOM Pass

UTF-16 encoding with BOM; no http or html declarations Pass

UTF-16 encoding with BOM; no http or html declarations; padded with >25MB and chunked Pass

UTF-16 encoding with BOM; padded with >25MB and chunked Pass

UTF-16-BE encoding Pass

UTF-16-BE encoding; no http or html declarations Pass

UTF-16-LE encoding Pass

UTF-16-LE encoding; no http or html declarations Pass

UTF-7 encoding Pass

UTF-8 encoding Pass

UTF-8 encoding with BOM Pass

UTF-8 encoding with BOM; no http or html declarations Pass

UTF-8 encoding with BOM; no http or html declarations; padded with >25MB and chunked Pass

UTF-8 encoding with BOM; padded with >25MB and chunked Pass

UTF-8 encoding; no http or html declarations Pass

UTF-8 encoding; no http or html declarations; padded with >25MB and chunked Pass

UTF-8 encoding; padded with >25MB and chunked Pass

Yoda's Protector Pass

Yoda's Protector with minimal protections Pass

Zip with high compression using the DEFLATE algorithm (CL=9) Pass

 © 2024 CyberRatings.org. All rights reserved. 17

Zip with high compression using the LZMA algorithm (CL=9) Pass

Zip with no compression Pass

Performance (With Security)

HTTP Capacity CPS Throughput (Mbps) Response Time (ms)

 1,000 Connections Per Second - 115.6 KB Response 1,260 1,260 1,808.5

 2,000 Connections Per Second - 57.4 KB Response 2,402 1,201 860.1

 4,000 Connections Per Second - 28.0 KB Response 4,700 1,175 299.2

 8,000 Connections Per Second - 13.5 KB Response 7,393 924 222.3

 16,000 Connections Per Second - 6.4 KB Response 10,607 663 60.3

 32,000 Connections Per Second - 2.7 KB Response 13,096 409 33.9

HTTPS Capacity (0x13, 0x02) CPS Throughput (Mbps) Response Time (ms)

 1,000 Connections Per Second - 113.8 KB Response 1,152 1,152 984.7

 2,000 Connections Per Second - 54.9 KB Response 2,009 1,005 427.4

 4,000 Connections Per Second - 25.7 KB Response 3,215 804 210.4

 8,000 Connections Per Second - 11.2 KB Response 6,012 752 96.3

 16,000 Connections Per Second - 3.9 KB Response 7,018 439 24.2

 32,000 Connections Per Second - 0.2 KB Response 8,136 254 0.0

HTTPS Capacity (0xC0, 0x30) CPS Throughput (Mbps) Response Time (ms)

 1,000 Connections Per Second - 115.0 KB Response 1,181 1,181 903.0

 2,000 Connections Per Second - 56.3 KB Response 2,090 1,045 498.9

 4,000 Connections Per Second - 27.0 KB Response 3,672 918 222.3

 8,000 Connections Per Second - 12.3 KB Response 6,180 773 172.3

 16,000 Connections Per Second - 5.0 KB Response 7,123 445 66.2

 32,000 Connections Per Second - 1.4 KB Response 8,334 260 29.5

Download Test (With Security)

Description Type File Size Baseline - Time Taken (s) DUT Time Taken (s)

1 MB Excel OneDrive Excel 1 MB 0.10 0.30

1 MB Excel Dropbox Excel 1 MB 0.10 0.30

1 MB Excel Google Drive Excel 1 MB 0.25 0.30

1 MB Excel HTTP Server Excel 1 MB 0.30 0.90

1 MB Excel HTTPS Web Server (0x13, 0x02) Excel 1 MB 0.27 0.30

1 MB Excel HTTPS Web Server (0xC0, 0x30) Excel 1 MB 0.30 0.30

 © 2024 CyberRatings.org. All rights reserved. 18

Description Type File Size Baseline - Time Taken (s) DUT Time Taken (s)

1 MB PDF OneDrive PDF 1 MB 0.10 0.30

1 MB PDF Dropbox PDF 1 MB 0.17 1.20

1 MB PDF Google Drive PDF 1 MB 0.23 0.30

1 MB PDF HTTP Server PDF 1 MB 0.27 0.90

1 MB PDF HTTPS Web Server (0x13, 0x02) PDF 1 MB 0.30 0.30

1 MB PDF HTTPS Web Server (0xC0, 0x30) PDF 1 MB 0.30 1.25

Description Type File Size Baseline - Time Taken (s) DUT Time Taken (s)

1 MB Word OneDrive Word 1 MB 0.10 0.30

1 MB Word Dropbox Word 1 MB 0.10 0.35

1 MB Word Google Drive Word 1 MB 0.27 0.35

1 MB Word HTTP Server Word 1 MB 0.27 1.15

1 MB Word HTTPS Web Server (0x13, 0x02) Word 1 MB 0.27 0.30

1 MB Word HTTPS Web Server (0xC0, 0x30) Word 1 MB 0.30 0.30

Description Type File Size Baseline - Time Taken (s) DUT Time Taken (s)

1 MB Zip OneDrive ZIP 1 MB 0.15 0.30

1 MB Zip Dropbox ZIP 1 MB 0.20 0.30

1 MB Zip Google Drive ZIP 1 MB 0.25 1.20

1 MB Zip HTTP Server ZIP 1 MB 0.27 0.90

1 MB Zip HTTPS Web Server (0x13, 0x02) ZIP 1 MB 0.30 0.30

1 MB Zip HTTPS Web Server (0xC0, 0x30) ZIP 1 MB 0.30 0.30

Description Type File Size Baseline - Time Taken (s) DUT Time Taken (s)

10 MB Excel OneDrive Excel 10 MB 0.65 1.25

10 MB Excel Dropbox Excel 10 MB 0.55 0.95

10 MB Excel Google Drive Excel 10 MB 0.65 4.20

10 MB Excel HTTP Server Excel 10 MB 1.13 8.40

10 MB Excel HTTPS Web Server (0x13, 0x02) Excel 10 MB 1.00 0.70

10 MB Excel HTTPS Web Server (0xC0, 0x30) Excel 10 MB 0.93 0.75

Description Type File Size Baseline - Time Taken (s) DUT Time Taken (s)

10 MB PDF OneDrive PDF 10 MB 0.70 1.00

10 MB PDF Dropbox PDF 10 MB 0.43 0.85

10 MB PDF Google Drive PDF 10 MB 0.53 1.45

10 MB PDF HTTP Server PDF 10 MB 1.13 9.05

10 MB HTTPS Web Server (0x13, 0x02) PDF 10 MB 1.27 0.75

10 MB HTTPS Web Server (0xC0, 0x30) PDF 10 MB 1.17 0.70

 © 2024 CyberRatings.org. All rights reserved. 19

Description Type File Size Baseline - Time Taken (s) DUT Time Taken (s)

10 MB Word OneDrive Word 10 MB 0.63 1.05

10 MB Word Dropbox Word 10 MB 0.43 0.95

10 MB Word Google Drive Word 10 MB 0.57 0.95

10 MB Word HTTP Server Word 10 MB 0.93 8.50

10 MB Word HTTPS Web Server (0x13, 0x02) Word 10 MB 1.43 0.85

10 MB Word HTTPS Web Server (0xC0, 0x30) Word 10 MB 1.07 0.70

Description Type File Size Baseline - Time Taken (s) DUT Time Taken (s)

10 MB Zip OneDrive ZIP 10 MB 1.85 1.45

10 MB Zip Dropbox ZIP 10 MB 0.55 0.95

10 MB Zip Google Drive ZIP 10 MB 0.80 0.95

10 MB Zip HTTP Server ZIP 10 MB 1.17 8.05

10 MB Zip HTTPS Web Server (0x13, 0x02) ZIP 10 MB 0.90 0.70

10 MB Zip HTTPS Web Server (0xC0, 0x30) ZIP 10 MB 1.20 0.75

Description Type File Size Baseline - Time Taken (s) DUT Time Taken (s)

100 MB Excel OneDrive Excel 100 MB 6.45 8.45

100 MB Excel Dropbox Excel 100 MB 2.15 4.75

100 MB Excel Google Drive Excel 100 MB 5.50 8.40

100 MB Excel HTTP Server Excel 100 MB 11.07 84.50

100 MB Excel HTTPS Web Server (0x13, 0x02) Excel 100 MB 10.80 9.40

100 MB Excel HTTPS Web Server (0xC0, 0x30) Excel 100 MB 8.00 8.90

Description Type File Size Baseline - Time Taken (s) DUT Time Taken (s)

100 MB PDF OneDrive PDF 100 MB 6.20 13.50

100 MB PDF Dropbox PDF 100 MB 2.57 13.00

100 MB PDF Google Drive PDF 100 MB 5.07 13.00

100 MB PDF HTTP Server PDF 100 MB 10.43 88.50

100 MB PDF HTTPS Web Server (0x13, 0x02) PDF 100 MB 8.07 14.00

100 MB PDF HTTPS Web Server (0xC0, 0x30) PDF 100 MB 11.00 13.00

Description Type File Size Baseline - Time Taken (s) DUT Time Taken (s)

100 MB Word OneDrive Word 100 MB 7.30 6.40

100 MB Word Dropbox Word 100 MB 2.17 4.70

100 MB Word Google Drive Word 100 MB 3.67 5.55

100 MB Word HTTP Server Word 100 MB 7.17 82.00

100 MB Word HTTPS Web Server (0x13, 0x02) Word 100 MB 9.07 8.60

100 MB Word HTTPS Web Server (0xC0, 0x30) Word 100 MB 7.67 7.65

 © 2024 CyberRatings.org. All rights reserved. 20

Description Type File Size Baseline - Time Taken (s) DUT Time Taken (s)

100 MB Zip OneDrive ZIP 100 MB 7.15 7.50

100 MB Zip Dropbox ZIP 100 MB 2.25 7.40

100 MB Zip Google Drive ZIP 100 MB 4.25 16.00

100 MB Zip HTTP Server ZIP 100 MB 9.73 81.50

100 MB Zip HTTPS Web Server (0x13, 0x02) ZIP 100 MB 9.13 5.40

100 MB Zip HTTPS Web Server (0xC0, 0x30) ZIP 100 MB 8.67 10.45

Description Type File Size Baseline - Time Taken (s) DUT Time Taken (s)

1,000 MB Excel OneDrive Excel 1,000 MB 64.50 88.00

1,000 MB Excel Dropbox Excel 1,000 MB 14.50 62.00

1,000 MB Excel Google Drive Excel 1,000 MB 27.50 91.00

1,000 MB Excel HTTP Server Excel 1,000 MB 104.33 860.50

1,000 MB Excel HTTPS Web Server (0x13, 0x02) Excel 1,000 MB 84.67 100.00

1,000 MB Excel HTTPS Web Server (0xC0, 0x30) Excel 1,000 MB 82.33 72.00

Description Type File Size Baseline - Time Taken (s) DUT Time Taken (s)

1,000 MB PDF OneDrive PDF 1,000 MB 54.67 144.50

1,000 MB PDF Dropbox PDF 1,000 MB 17.00 151.00

1,000 MB PDF Google Drive PDF 1,000 MB 39.50 148.00

1,000 MBPDF HTTP Server PDF 1,000 MB 94.00 880.00

1,000 MB PDF HTTPS Web Server (0x13, 0x02) PDF 1,000 MB 82.67 145.00

1,000 MB PDF HTTPS Web Server (0xC0, 0x30) PDF 1,000 MB 97.67 147.50

Description Type File Size Baseline - Time Taken (s) DUT Time Taken (s)

1,000 MB Word OneDrive Word 1,000 MB 61.33 59.50

1,000 MB Word Dropbox Word 1,000 MB 16.67 77.00

1,000 MB Word Google Drive Word 1,000 MB 55.67 71.00

1,000 MB Word HTTP Server Word 1,000 MB 90.33 804.50

1,000 MB Word HTTPS Web Server (0x13, 0x02) Word 1,000 MB 84.33 78.00

1,000 MB Word HTTPS Web Server (0xC0, 0x30) Word 1,000 MB 96.67 95.50

Description Type File Size Baseline - Time Taken (s) DUT Time Taken (s)

1,000 MB Zip OneDrive ZIP 1,000 MB 59.50 70.00

1,000 MB Zip Dropbox ZIP 1,000 MB 16.50 64.00

1,000 MB Zip Google Drive ZIP 1,000 MB 18.50 69.00

1,000 MB Zip HTTP Server ZIP 1,000 MB 90.33 808.00

1,000 MB Zip HTTPS Web Server (0x13, 0x02) ZIP 1,000 MB 85.00 99.50

1,000 MB Zip HTTPS Web Server (0xC0, 0x30) ZIP 1,000 MB 94.33 84.50

 © 2024 CyberRatings.org. All rights reserved. 21

We would like to issue a special thank you to Keysight for providing their CyPerf tool for us to test SSE.

We would also like to thank TeraPackets for providing us with their Threat Replayer tool.

Thomas Skybakmoen, Ahmed Basheer, Vikram Phatak

CyberRatings.org
515 South Capital of Texas Highway
Suite 225
Austin, TX 78746
info@cyberratings.org
www.cyberratings.org

© 2024 CyberRatings. All rights reserved. No part of this publication may be reproduced, copied/scanned, stored on a
retrieval system, emailed, or otherwise disseminated or transmitted without the express written consent of CyberRatings
(“us” or “we”).

Please read the disclaimer in this box because it contains important information that binds you. If you do not agree to
these conditions, you should not read the rest of this report but should instead return the report immediately to us. “You”
or “your” means the person who accesses this report and any entity on whose behalf he/she has obtained this report.

1. The information in this report is subject to change by us without notice, and we disclaim any obligation to update it.

2. The information in this report is believed by us to be accurate and reliable at the time of publication but is not
guaranteed. All use of and reliance on this report are at your sole risk. We are not liable or responsible for any damages,
losses, or expenses of any nature whatsoever arising from any error or omission in this report.

3. NO WARRANTIES, EXPRESS OR IMPLIED ARE GIVEN BY US. ALL IMPLIED WARRANTIES, INCLUDING IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT, ARE HEREBY
DISCLAIMED AND EXCLUDED BY US. IN NO EVENT SHALL WE BE LIABLE FOR ANY DIRECT, CONSEQUENTIAL,
INCIDENTAL, PUNITIVE, EXEMPLARY, OR INDIRECT DAMAGES, OR FOR ANY LOSS OF PROFIT, REVENUE, DATA,
COMPUTER PROGRAMS, OR OTHER ASSETS, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

4. This report does not constitute an endorsement, recommendation, or guarantee of any of the products (hardware or
software) tested or the hardware and/or software used in testing the products. The testing does not guarantee that there
are no errors or defects in the products or that the products will meet your expectations, requirements, needs, or
specifications, or that they will operate without interruption.

5. This report does not imply any endorsement, sponsorship, affiliation, or verification by or with any organizations
mentioned in this report.

6. All trademarks, service marks, and trade names used in this report are the trademarks, service marks, and trade
names of their respective owners.

https://www.keysight.com/us/en/products/network-test/cloud-test/cyperf.html
https://www.terapackets.com/#about
http://www.cyberratings.org/

